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This paper presents a multiphase level set method of piecewise constants for shape and
topology optimization of multi-material piezoelectric actuators with in-plane motion. First,
an indicator function which takes level sets of piecewise constants is used to implicitly rep-
resent structural boundaries of the multiple phases in the design domain. Compared with
standard level set methods using n scalar functions to represent 2n phases, each constant
value in the present method denotes one material phase and 2n phases can be represented
by 2n pre-defined constants. Thus, only one indicator function including different constant
values is required to identify all structural boundaries between different material phases
by making use of its discontinuities. In the context of designing smart actuators with in-
plane motions, the optimization problem is defined mathematically as the minimization
of a smooth energy functional under some specified constraints. Thus, the design optimi-
zation of the smart actuator is transferred into a numerical process by which the constant
values of the indicator function are updated via a semi-implicit scheme with additive oper-
ator splitting (AOS) algorithm. In such a way, the different material phases are distributed
simultaneously in the design domain until both the passive compliant host structure and
embedded piezoelectric actuators are optimized. The compliant structure serves as a
mechanical amplifier to enlarge the small strain stroke generated by piezoelectric actua-
tors. The major advantage of the present method is to remove numerical difficulties asso-
ciated with the solution of the Hamilton–Jacobi equations in most conventional level set
methods, such as the CFL condition, the regularization procedure to retain a signed dis-
tance level set function and the non-differentiability related to the Heaviside and the Delta
functions. Two widely studied examples are chosen to demonstrate the effectiveness of the
present method.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Microactuators are now becoming increasingly popular as they offer significant potential in a broad range of engineering
applications. Amongst a variety of actuators, piezoelectric material based actuation has been considered as one of the most
appealing means due to its favorable characteristics, e.g. high energy densities in nanometer range, fast response time and
large loading capacity [15,29]. It is well known that the piezoelectric actuator uses the inverse rather than the direct piezo-
electric effect to convert electric energy to mechanical actuation. This research concentrates on the design of piezoelectric
. All rights reserved.
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actuators capable of generating in-plane motion rather than out-of plane motion. The devices with in-plane motion are more
suitable for micro-mechanical systems [1] because of the consideration of the microscale packaging process.

A range of methods have been developed for the design of piezoelectric actuators in the context of smart structures. As
noted in [15], a large portion of current research, however, either concentrates on optimal design of host compliant structure
with one or more pre-determined actuators [40,11] or concerns with the design of the actuator with given structure [18,42].
It is noted that both design methods impose a limitation on the optimality of the piezoelectric actuation system [15]. Since
the performance of a smart actuator is dependent on the coupling between a host structure and its attached piezoelectric
actuators [8,10], a more potential way is to simultaneously optimize both piezoelectric actuators (placements, shapes, topol-
ogies, etc.) and their host structure (shape and topology) via a numerical process of distributing the elastic material, the pie-
zoelectric material and the void material in the design domain at the same time. Thus, the piezoelectric actuator considered
in this work is such a device in which a passive compliant host structure is actuated by embedded piezoelectric elements to
generate in-plane motions at specific positions. Since the actuators designed in this way is usually subject to small strain
stroke [40], the host structure serves as a compliant mechanical amplifier to enlarge the small stroke produced by piezoelec-
tric materials [19,11,22]. A piezoelectric actuator can therefore be regarded as an electromechanically actuated compliant
mechanism [17] capable of accomplishing complex in-plane movements without the use of conventional joints and pins.
Such smart actuators are particularly suitable for transmitting nanometer to micrometer displacement in micro-mechanical
systems (MEMS) [1]. Hence, this study aims to develop a systematic design method for multiphysics and multi-material
smart actuators with in-plane motions using a new shape and topology optimization method.

The goal of topology optimization is to find the optimal distribution of a given amount of material via an iterative numer-
ical process in an extended fixed domain to extremize a specified objective function [14,5]. The field of topology optimization
has experienced considerable advance during the past decade with development of different methods, e.g. the homogeniza-
tion method [4], the SIMP method [55,28,6], the evolutionary structural optimization (ESO) method [53], the level set meth-
od including both the standard level set-based methods [37,33,47,2] and the parameterization or equivalent level set
methods [3,16,49,26,27,50]. Amongst a variety of possible applications of the topology optimization method, the design
of piezoelectric actuators has been very promising [11,8,10,20]. However, most current studies are mainly concerned with
single material design and the research on multi-material design is relatively rare. Hence, only a few available publications
are on multi-material shape and topology optimization problems, which mostly employ material distribution (Homogeniza-
tion or SIMP) methods in conjunction with a rule of mixtures to implement multiphase modeling. For instance, Sigmund [39]
studied a hybrid power-law interpolation scheme to describe the effective material properties for electrothermomechanical
multiphysics actuators, by combining the Hashin–Shtrikman bounds with the standard power-law penalization method.
Buehler et al. [8] used the homogenization method to implement the simultaneous design of a given amount of non-piezo-
electric and piezoelectric material in the design domain with un-pre-determined sizes and shapes. Carbonari et al. [10] used
a SIMP based power-law interpolation scheme to address the placements of the piezoelectric materials and the topology of
the flexible structure, but it was reported that the material interpolation model applied suffers from several well-recognized
drawbacks [39]. There are still two fundamental issues [48] that are in debate when applying the material distribution meth-
od to the multi-material topology optimization: the material interpolation scheme and the ill-posedness of the optimization
problem.

There have been several methods for the multiphase motions using level sets [54,12,46,48,23,24]. Vese and Chan [46] pro-
posed a level set multiphase scheme to implement image segmentation using the Mumford and Shah model, which requires
log n level set functions for n segments or phases in the piecewise constant case. Wang and Wang [48] studied a ‘‘color” level
set model for the shape and topology optimization of multiphase material problems [48] based on the standard level set
method [32,36,34], which represents 2n different material phases using n level set functions. However, this method may lead
to some empty regions if the number of the multiple phases is not exactly equal to 2n, because in this case the total number
of the phases is over estimated. The standard level set-based methods suffer from several numerical difficulties related to the
implementation of the Hamilton–Jacobi equation [49,26]. Tai et al. [23,24,44] proposed a piecewise constant ‘‘level set”
method (PCLSM) to identify curves separating regions into different phases in Mumford–Shah image segmentation, which
only uses one indicator function taking piecewise constants rather than several level set functions to represent multiple
phases. Wei and Wang [50] studied the basic application of the piecewise constant ‘‘level set” method [23,24] to structural
shape and topology optimization problems, but it is merely concentrated on structural stiffness designs involving one single
material. However, the most attractive feature of PCLSM is to represent and identify the boundaries of the multiphase mo-
tions [54,35,46].

Therefore, this study presents a shape and topology optimization method for multiphysics and multi-material piezoelec-
tric actuators using PCLSM [23,24,43,44]. An indicator function consisting of several piecewise constants is applied to model
different regions in the entire design domain for multi-material smart actuators. Each constant value function involved in the
level set function is used to uniquely represent one material phase, and n different phases require n piecewise constant value
functions. A minimization functional is defined as a smooth energy term to formulate the optimization problem with the
specified constraints. In doing so, the design optimization is converted into a process of renewing all the constant value func-
tions using a semi-implicit AOS algorithm [25,52] to descend the design sensitivity [27], until the shape and topology of both
host structure and the locations, shapes and topologies of piezoelectric materials are optimized in the same design domain
simultaneously. The major characteristic of PCLSM [24,23] is to remove the connection between the level set functions and
re-initializations of the signed distance function, to totally relax the time step limitation imposed by the CFL condition, and
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to avoid the non-differentiability related to the Heaviside and Delta functions. It should be noted that the level set function in
this study refers to an indicator function including piecewise constant functions [43,44] that is different from the concept in
the standard level set method [32,36] which are some Lipschitz continuous functions.

2. Piezoelectric finite element model

The constitutive equations describing the piezoelectric plate are based on the assumption that the total strain in the actu-
ator is the sum of mechanical strain caused by the applied electric voltage. The equations for the linear piezoelectric material
under quasi-static models can be written in tensor form as [21,7]:
rij ¼ Cijklekl � ekijEk; ð1Þ
Di ¼ eiklekl þ kikEk; ð2Þ
where Cijkl, ekl and rij (for 3D i, j = 1,2,3, k, l = 1,2,3) represents mechanical elastic tensor, strain and stress tensor, respec-
tively. ekij, kik, Ek and Di are matrices of piezoelectric constant, permittivity constant of mechanical constant strain, electric
field and electric displacement, respectively. It should be pointed out that Eq. (1) denotes the direct piezoelectric effect while
Eq. (2) shows the converse piezoelectric effect.

As far as the piezoelectric actuator with in-plane motion is concerned, when a voltage is applied to one of the piezoelec-
tric elements in the direction of polarization vector, the piezoelectric material produces actuation strain in directions 1 and 2,
and thus the actuator contracts or expands correspondingly in the same directions (Fig. 1). The induced force due to coupling
actuates the elastic structure and generates in-plane motions.

According to the principle of virtual work of a deformed piezoelectric medium, the weak formulation of the equilibrium
equations can be given as follow:
Z

X
eijðuÞCijkleklðvÞdXþ

Z
X
eijðvÞekijðr/ÞkdX ¼

Z
X

piv idXþ
Z

S
tiv idS; ð3Þ

Z
X
ðruÞkekijeijðuÞdX�

Z
X
ðruÞkkikðr/ÞidX ¼

Z
S
uiqidS; ð4Þ
where p and t represent body force and mechanical traction, and q denotes the electric body charge. v and u are virtual dis-
placement and virtual electric change, respectively.

Using finite element formulation, the following equilibrium equations for the piezoelectric medium is in matrix form can
be obtained as:
Kuu Kuu

KT
uu Kuu

" #
U
U

� �
¼

F
Q

� �
ð5Þ
where Kuu, Kuu and Kuu are the stiffness, piezoelectric coupling and dielectric matrices, respectively, U and U represent the
vectors of nodal displacements and nodal electric potentials, and F and Q are the vectors of applied nodal forces and nodal
electric charges. For smart piezoelectric plates used as actuators, it is usual to assume that the electric field is constant across
the thickness and aligned normal to the mid-plane. In other words, the electric potential is assumed to be linearly polarized
from the top electrode of the plate to its bottom electrode. As a result, U becomes a known vector for the actuator design. It
is also noted that Q contains only internal electric charges. Thus, the mechanical and electric problems are decoupled and
only the first set of equation need to be solved numerically, because in this case the dielectric properties involved in the sec-
ond set of equations can be ignored.
KuuUþ KuuU ¼ F; ð6Þ
where the mechanical stiffness matrix and the piezoelectric coupling matrix can be written as
Fig. 1. Schematic diagram of a piezoelectric actuator.



Fig. 2. Sub-domains and the piecewise constant functions.
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ðKuuÞe ¼
Z

X
BT

uCBudX ¼
XN

e¼1

Z
Xe
ðBT

uÞ
eCeðBuÞedX

� �
; e ¼ 1;2; . . . N ð7Þ

ðKuuÞe ¼
Z

X
BT

ueTBudX ¼
XN

e¼1

Z
Xe
ðBT

uÞ
eðeTÞeðBuÞedX

� �
; e ¼ 1;2; . . . N ð8Þ
In the design of piezoelectric actuators with in-plane motion, it is a common practice to calculate the actuation force as fol-
lows if the voltage is applied as the input to the piezoelectric material
Fe
pzt ¼ �

Z
Xe
ðBT

uÞ
eðeTÞeðBuÞedX

� �
Ue ¼

Z
Xe
ðBT

uÞ
eðeTÞedX

� �
Ee: ð9Þ
In this way, the global equilibrium equation is changed to the following form:
KuuU ¼ Fþ Fe
pzt; ð10Þ
where the electric field is related to the electric potential by
Ee ¼ �gradðuÞ ¼ �BUû: ð11Þ
Since the electric potential is supposed to distribute linearly along the thickness of the piezoelectric plate (Fig. 1), and the
electric field vector for any element is given as
Ee ¼ ½0 0 ve=t�T; ð12Þ
where ve is the applied related voltage and t is the thickness of the piezoelectric plate. u is the electric potential, û is the
vector of nodal potentials and BU is the strain matrix.

3. Piecewise constant multiphase formulation

With standard level set methods [32,34], the multiphase interfaces will be implicitly tracked by representing them
respectively as the zero level sets of some Lipschitz continuous functions of higher dimension [48]. However, in this study,
the different phases are identified only using one indicator function including level sets of piecewise constants in the design
domain [23,24,43,44].

It is assumed that X is completely divided into a set of sub-regions fXign
i¼1 (such as i = 1,2,3 in Fig. 2). To identify the dif-

ferent sub-domains involved in X, it needs to find an indicator function U which takes the following constant values such
that:
UðxÞ ¼ i; x 2 Xi ði ¼ 1;2; . . . ;nÞ: ð13Þ
A set of characteristic functions vi (Fig. 3) associated with U are then defined as follows for the sake of uniquely identifying
the different sub-domains
Fig. 3. Corresponding characteristic function for each sub-domain.
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viðUÞ ¼
1
ai

Yn

j¼1;j–i

ðU� jÞ and ai ¼
Yn

k¼1;k–i

ði� kÞ: ð14Þ
Thus, any of a piecewise constant function w is defined in terms of the characteristic functions
wðUÞ ¼
Xn

i¼1

civiðUÞ: ð15Þ
The curves separating the regions can then be described via the discontinuities of U taking a set of constant values. For in-
stance, the function for a three phase’s problem with two different solid materials can be defined by
wðUÞ ¼
X3

i¼1

civiðUÞ ¼ ðc1v1ðUÞ þ c2v2ðUÞ þ c3v3ðUÞÞ; ð16Þ
where
v1ðUÞ ¼ ðU� 2ÞðU� 3Þ=a1 and a1 ¼ ð1� 2Þð1� 3Þ ¼ 2; ð17Þ

v2ðUÞ ¼ ðU� 1ÞðU� 3Þ=a2 and a2 ¼ ð2� 1Þð2� 3Þ ¼ �1; ð18Þ

v3ðUÞ ¼ ðU� 1ÞðU� 2Þ=a3 and a3 ¼ ð3� 1Þð3� 2Þ ¼ 2; ð19Þ
where ci (i = 1,2, . . . ,n) are the pre-defined coefficients no need to be updated together with the design variables [24]. In this
work, the values of ci for three different phases are defined as c1 = 0.001, c2 = 0.5 and c3 = 1 [51]. It is noted that the length of
curves surrounding each sub-domain Xi and the area of each sub-domain Xi can be expressed, respectively, as follows:
joXij ¼
Z

X
jrviðUÞjdx and jXij ¼

Z
X
viðUÞdx ð20Þ
4. Topology optimization of multi-material actuators

In this work, the PCLSM based topology optimization method is used to seek the optimum distribution of a given portion
of materials by simultaneously determining the distributions of the elastic, piezoelectric and void phases under specified
supports and applied loads.

The design domain of multi-material piezoelectric actuators is illustrated in Fig. 4, where an artificial spring model [38]
consisting of a spring with a given stiffness is mounted at the output port position to simulate the reaction force from a
workpiece.

4.1. Optimization formulation of multi-material actuators

To ensure that Eq. (14) is a unique representation of w and also to ensure the indicator function U converges to piecewise
constant values at convergence, the function U is required to satisfy the following constraint at every point x 2X
KðUÞ ¼ 0; ð21Þ
where
KðUÞ ¼ ðU� 1ÞðU� 2Þ . . . ðU� nÞ ¼
Yn

i¼1

ðU� iÞ: ð22Þ
Fig. 4. Design domain of multi-material smart actuators.
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In this way, the constraint in Eq. (21) can be used to guarantee there is no vacuum and overlap between different material
phases [23,24], compared with the conventional level set methods using other schemes to avoid vacuum and overlap
[54,46,48]. The design of multi-material piezoelectric actuators is formulated as a constrained minimization problem with
respect to the design variable U as follows:
Minimize
ðUÞ

: Jðu;UÞ ¼
R

X wðUÞf ðu;vÞdXþ b
R

X jrUjdX

Subject to :

G0ðUÞ ¼ KðUÞ ¼ 0;

G1ðUÞ ¼
R

X wðUÞdX� V�1 6 0;

G2ðUÞ ¼
R

X wðUÞdX� V�2 6 0;

Equilibrium equation:

8>>>><
>>>>:

8>>>>>>>>><
>>>>>>>>>:

ð23Þ
In this work, only U is regarded as the design variable to be updated and c is a pre-determined value [50,51]. V�1 and V�2 are
the volume constraints related to elastic and piezoelectric materials, respectively. It is noted that the second term on the
right-hand side of the objective formulation, the sum of the perimeters of the sub-domain boundaries, is used as a penali-
zation to regularize the solution space because of the ill-posedness of the original problem [24]. It is necessary to use the
penalization parameter b > 0 to control the influence of the regularization term, and thus to control the jumps and the length
of the sub-domain boundaries. The equilibrium equation is defined in terms of Eq. (10) as
�aðu;v;UÞ ¼ �lðv ;/;UÞ; ð24Þ
where
�aðu;v;UÞ ¼
Z

X
wðUÞeijðuÞTCijkleklðvÞdX ð25Þ

�lðv ;/;UÞ ¼
Z

X
w0ðUÞjrUjsvdXþ

Z
X

wðUÞðr/kÞ
TeT

kijeijðvÞdX; ð26Þ
where r is the gradient operator, and v is the virtual displacement field. u and / are the displacement field and electric po-
tential vector, respectively. U is the indicator function including piecewise constants, and w represents any piecewise con-
stant in Eq. (15).

4.2. Design sensitivity analysis

Using the augmented Lagrangian function method [31], the constrained minimization problem is converted to the follow-
ing unconstrained minimization problem
LðU; k0;l0; k1;l1; k2;l2Þ ¼ Jðu;UÞ þ �aðu; v;UÞ ��lðv ;/;UÞ þ k0

Z
X

G0ðUÞdXþ 1
2l0

Z
X

G0ðUÞ2dXþ k1G1ðUÞ þ
1

2l1

� ½G1ðUÞ�2 þ k2G2ðUÞ þ
1

2l2
½G2ðUÞ�2; ð27Þ
where X denotes a smooth bounded open set. k0, k1 and k2 are the Lagrangian multipliers, and l0, l1 and l2 are the penal-
ization parameters, respectively. Then, the minimization of L can be obtained by finding a saddle-point of the augmented
Lagrangian functional, which means to find the stationary point of the Lagrangian by letting dL = 0 with respect to the design
variable U, the Lagrangian multipliers and the penalization parameters, respectively

(1) The state equation can be found by satisfying oL/ov = 0
�aðu;v 0;UÞ ¼ �lðv 0;/;UÞ: ð28Þ
(2) The adjoint equation can be obtained by applying oL/ou = 0
Jðu0;UÞ ¼ �aðu0;v ;UÞ: ð29Þ
(3) By applying oL/o(k0,k1,k2) = 0, the equations of the inequality conditions are given as
k0

Z
X

KðUÞdX ¼ 0; k0 P 0

k1

Z
X

wðUÞdX� V�1

� �
¼ 0; k1 P 0

k2

Z
X

wðUÞdX� V�2

� �
¼ 0; k2 P 0

ð30Þ



Z. Luo et al. / Journal of Computational Physics 228 (2009) 2643–2659 2649
(4) To find the optimality criteria via updating the piecewise constant level set function, the strong formulation of the
optimality criteria can be found by letting
oL
oU
¼ Jðu;U0Þ þ �aðu;v;U0Þ ��lðv ;/;U0Þ þ k0

Z
X

G00dXþ k1G01 þ k2G02 ¼ 0: ð31Þ
According to Eqs. (23) and (31) can further be rewritten as
oL
oU
¼
Z

D
#ðU; k0;l0; k1;l1; k2;l2Þ �U

0dX ¼ 0; ð32Þ
where # can be found by deriving the related equations in Eq. (23), respectively, as
# ¼ w0ðUÞf ðu;vÞ þ b r � rU
jrUj

� �
�rðsvÞ � rU

jrUj � r � rU
jrUj

� �
sv þ w0ðUÞðr/kÞ

TeT
kijeijðvÞ þ w0ðUÞeT

ijðuÞCijkleklðvÞ

þ k0K 0ðUÞ þ k1w
0ðUÞ þ k2w

0ðUÞ: ð33Þ
The state and adjoint equations in (28) and (29) need to be solved using the finite element method in order to obtain the
unknown displacement vectors u and v, respectively, in Eq. (33). For a three-phase piezoelectric actuator in this work, we
have
w0ðUÞ ¼ ðc1 � 2c2 þ c3ÞUþ 0:5ð�5c1 þ 8c2 � 3c3Þ; ð34Þ

K 0ðUÞ ¼ ð3U2 � 12Uþ 11Þ ð35Þ
An ad hoc scheme for updating the Lagrangian multipliers and the penalty parameters are, respectively, given as follows
[44,50,27]:
kkþ1
0 ¼ kk

0 þ
1
lk

0

½KðUÞ� ð36Þ

kkþ1
1 ¼ kk

1 þ
1
lk

1

Z
X

wðUÞdX� V�1

� �
; ð37Þ

kkþ1
2 ¼ kk

2 þ
1
lk

2

Z
X

wðUÞdX� V�2

� �
; ð38Þ

lkþ1
i 2 ð0;lk

i Þ; i ¼ 1;2;3: ð39Þ
It is noted that the derivative of the augmented Lagrangian function agrees with that of the objective function if all the con-
straints are satisfied. To ensure the decent of the objective function, a proper velocity field dU/dt = v should be selected for
the piecewise constant level set function. As indicated in the literature [47,2], the simplest way is to directly determine a
steepest descent direction by letting
v ¼ U0 ¼ �#ðU; k0;l0; k1;l1; k2;l2Þ ð40Þ
so as to guarantee a descent direction of the augmented Lagrangian function (objective), because
oL
oU
¼ �

Z
X
½#ðU; k0;l0; k1;l1; k2;l2Þ�

2dX 6 0: ð41Þ
Therefore, the minimization problem can be solved by using the following (or equivalent) scheme to update the level set
function U [24]:
oUðx; tÞ
ot

þ vðxÞ ¼ 0() Unþ1 �U
Dt

n

þ vðxÞ ¼ 0; Uðx; 0Þ ¼ U0ðxÞ; ð42Þ
where Dt represents a small positive number which can be determined by using trial and error [24,44]. It can be seen that
the differential equation in (42) is a type of partial differential equations (PDE) similar to that in the conventional level set
methods [36].

5. A semi-implicit additive operator splitting scheme

Amongst many methods for solving Eq. (42), it is well known that the conventional explicit scheme has a strict lim-
itation on time-marching step size and it is only numerically stable for very small time steps satisfying the CFL condition
[25,36], which will lead to poor computational efficiency and limits its practical applications. This section employs a
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semi-implicit scheme to enable the discrete level set processing so as to update the level sets of piecewise constant types
in the indicator function U. The semi-implicit scheme was originally presented in image processing technologies and
computer version by Lu et al. [25], and later independently developed in a different context of image processing [52].
The basic idea behind the AOS scheme is to split the m-dimensional spatial operator into a set of one-dimensional space
discretizations that can be efficiently solved with a well-founded Gaussian elimination algorithm named Thomas
Algorithm [52]. The AOS scheme inherits several favorable features from their original image diffusion process [25],
which treats all coordinate axes equally and can be easily implemented in arbitrary dimensions. A similar semi-implicit
scheme has been applied to shape and topology optimization of compliance designs of single material structures [27].
This study applies the AOS scheme to more general shape and topology optimization problems of multiphysics and
multi-material.

Considering Eqs. (40) and (42), the semi-implicit AOS scheme for updating the function U is given as [52,27]
Ukþ1 ¼ 1
m

Xm

l¼1

½I �mDtnAlðUkÞ��1½Uk þ DtvðxÞ�; ð43Þ
where n is the weighting factor for the diffusion term, and m represents the number of dimensions. Al is introduced as the
matrix to measure the derivatives along the lth coordinate axis. All these operators are composed of a strictly diagonally
dominant tridiagonal linear system. With the definition of Al (Uk) = aij(Uk), aij(Uk) can be expressed as follows:
aij ¼

1
h2

l

2
ðjrUjki þjrUjkj Þ

; j 2 NlðiÞ

0; else
� 1

h2
l

P
n2NlðiÞ

2
ðjrUjki þjrUjknÞ

; i ¼ j:

8>>><
>>>:

ð44Þ
The operator A can be spilt into two components in x and y directions, respectively, as
A1 ¼
o

ox
1

jrUjk
o

ox

 !
; A2 ¼

o

oy
1

jrUjk
o

oy

 !
: ð45Þ
In numerical implementation, the level set function U can be updated as
Ukþ1 ¼ 1
2
½u1ðU

kþ1Þ þu2ðU
kþ1Þ�: ð46Þ
To simplify the above equation, let
u1ðU
kþ1Þ ¼ ðI � 2DtnA1ðUkÞÞ�1½Uk þ DtvðxÞ�; ð47Þ

u2ðU
kþ1Þ ¼ ðI � 2DtnA2ðUkÞÞ�1½Uk þ DtvðxÞ�: ð48Þ
Then, u1(U) and u2(U) can be easily solved with the following equations using the Thomas method as a Gaussian elimination
algorithm for tridiagonal systems [52].
½I � 2DtnA1ðUkÞ�u1ðUÞ ¼ Uk þ DtvðxÞ; ð49Þ

½I � 2DtnA2ðUkÞ�u2ðUÞ ¼ Uk þ DtvðxÞ ð50Þ
As described above, the AOS scheme is time stable by satisfying all practical discrete scale-space for arbitrary time step sizes
in solving Eq. (42), and it can enable a much large time step size due to the total relaxation of the CFL condition. Weickert
et al. [52] have proved that under typical accuracy requirements AOS schemes are at least several times as efficient as the
conventional explicit schemes. Although the AOS scheme does not suffer from any time step size restriction because of the
total relaxation of the CFL condition, in practice it is undesirable to use too large time steps due to the linearization of the
scheme, as it will lead to poor rotation invariance in non-linear diffusion problems [52].

It is well known that the conventional discrete level set methods have a tendency to lose the shape of the level set surface
and as a result lead to too flat and (or) too steep gradients [45], due to unwanted numerical diffusion caused by the local
approximation scheme (e.g. up-wind schemes). In general, it needs to regularize the original surface using a time-consuming
re-initialization scheme [32,34] to ensure a good approximation of the curvature of the free front, so as to resurrect the
behavior of the level set surface in the neighbor of the front while keeping the zero level set unchanged. The error accumu-
lated from periodic re-initialization may appreciably move the front if the common iterative procedure is used to retain a
signed distance function. Furthermore, the re-initialization algorithm will forbid the nucleation of new holes inside the
material domain [9,30]. But the present AOS scheme is capable of ensuring a globally smooth level set surface, as the under-
lying problem is evaluated over the entire level set function and the steep gradients is obtained on the fixed extended design
domain. Hence, it is unlikely to lose the surface without applying the re-initialization procedures, which is conventionally
caused by local numerical approximation methods when explicit time-marching schemes like the up-wind method are em-
ployed [47,2].
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6. Numerical implementation

6.1. Numerical procedure

The major steps for the present level set method can be outlined as follows:
For k = 0,1,2 . . .

(1) Solve the state and adjoint equations using the finite element method to get the displacement vectors u and v in Eq.
(33), respectively;

(2) Perform design sensitivity analysis to obtain the derivatives H0(U) and K0(U) in Eqs. (34) and (35), and then to deter-
mine the solution of # in Eq. (40);

(3) Use the AOS scheme to update the level set function U starting from Uk in Eq. (40), so as to minimize the objective
function in Eq. (23);

(4) Renew the Lagrange multipliers k0, k1 and k2 and the related penalty parameters l0, l1 and l2 in Eqs. (36)–(39);
(5) Check convergence, if satisfied, stop, else, go to step (1).

6.2. The piecewise constant constraint

As aforementioned, the piecewise constant constraint K(U) = 0 plays an important role in the optimization problem be-
cause it actually serves as a penalization to ensure that each point x 2X can converge to one and only one phase, so as to
ensure that there is no vacuum and overlap between different material phases [24,43,50,51]. If K(U) = 0 is satisfied, Eq. (15)
will lead to a unique representation of the piecewise constant function H(U) at convergence and different values of U cor-
respond to different function values H(U). It can be easily understood that the original constraint K(U) = 0 in Eq. (23) can be
replaced by Kn(U) = 0 (n is an integer larger than 1). Fig. 5 shows the shapes of Kn(U) when n has different values such as 2, 4
and 6. For all these cases, it can be seen that the constant values of function U can converge to 1, 2 and 3 when the value of
Kn(U) approaches to 0. However, the figure shows that if n has a larger value (i.e. n = 6) the penalization effect of the piece-
wise constant constraint will degenerate when U deviates from the piecewise constant values such as 1, 2 and 3. The numer-
ical process indicates that for a larger n the stability of the convergence is slightly improved, but more iteration is required
for the level set value on each point to converge to the corresponding phase exactly. The possible reason for this is that the
gradient of Kn(U) decreases as the value of n is increased. Thus, n = 2 is used here to achieve a faster convergence speed, to
strengthen the penalization effect and to guarantee a moderate stability.

6.3. Numerical examples

Two widely studied examples are used to illustrate the application of the present method to shape and topology optimi-
zation of piezoelectric actuators. The objective is to simultaneously distribute non-piezoelectric, piezoelectric and void
materials without pre-defined shapes and topologies in the design domain. In each of the examples, we adopt the same
material model only for the sake of simplicity. However, it is straightforward to apply the present level set method to shape
and topology optimization problems including any kinds of engineering materials. It should be pointed out that the units of
all the parameters can be defined flexibly, but they should remain unchanged and uniformly during all stages such as for-
mulation modeling, finite element analysis and optimization procedure. In this research, the standard PZT-5A model is used
Fig. 5. Piecewise constant constraint with different n values.



Fig. 6. (a) Design domain of the multi-material smart actuator. (b) ‘‘A-A” section of the multi-material design domain.
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for the piezoelectric material and Aluminum is used for the elastic material. The voltage is applied to generate the piezoelec-
tric actuation via the electrodes attached to the entire upper and lower surfaces of the design domain, because the piezoelec-
tric electrodes are not known in advance. The termination criterion of iteration is the relative difference of the objective
function values between two successive iterations is less than 0.001.

6.3.1. Example 1
The design domain is shown as Fig. 6(a) with fixed mechanical boundary conditions at left and right sides, and it is dis-

cretized with 150 � 50 isotropic plate finite elements with a uniform thickness 10 lm. The piezoelectric field is displayed in
Fig. 6(b) with an applied voltage 500 V. It should be pointed out that the actual boundary lengths are 600 � 200 lm, but we
have scaled the sizes in Fig. 7 only for the sake of displaying the level set surface more clearly by fully taking advantage of the
Matlab function. The volume constraints for elastic and piezoelectric material are specified as 15% and 10%, respectively. The
constant values 1, 2 and 3 are used as different piecewise functions to represent the void, elastic and piezoelectric material,
Fig. 7. Topologies of the multi-material smart actuator.



Fig. 8. Level set surfaces of the multi-material smart actuator.
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respectively. In the AOS scheme, the parameter b = 0.005 is applied to control the influence of the regularization term, and
the time step size is selected as Dt = 5 to enable the advancement of the piecewise constant level set function U.

The evolvement process of the topologies and the corresponding level set surfaces are shown in Figs. 7 and 8, respectively.
The constant value function ‘‘1” represents the level set of the void region, ‘‘2” denotes the level set of the passive elastic
material and ‘‘3” is the level set of the piezoelectric material. It can be seen that the proposed piecewise level set method
is able to distribute the non-piezoelectric material and the piezoelectric material in the fixed extended design domain at
the same time. As a result, the shape and topology of passive host compliant structure and placements, shapes and topologies
of the PZT actuators can be optimized simultaneously. The passive structure can be regarded as a compliant mechanical mul-
tiplier to enlarge the small output stroke produced by the PZT material. Furthermore, we can find that the present piecewise
constant level set method still retains the favorable characteristics of the implicit free boundary representation scheme
[32,36]. For instance, the shape and topology optimization can be processed at the same time via a smooth advancement
of the explicit boundaries. Fig. 9(a) displays the convergent history of the design objective to have been maximized at the
specified output position, in which the optimal value 9.87 lm is obtained after 200 iterations. The volume ratios in relation
to the elastic and piezoelectric material in Fig. 9(b) show that the both constraints are conservative, where the upper curve
for the elastic material converges from 0.5 to 0.15 and the lower is from 0.5 to 0.1.

Compared to the conventional level set method [32,36,34], the proposed level set method is free from the limitation of the
CFL condition so that a large time step size is applied to speed up the convergence process. If the same problem is solved
using the conventional level set method with explicit up-wind scheme [48], it needs at least 2000 iterations to achieve
the optimal design under the same convergence condition. In addition, it is unnecessary to apply the re-initialization proce-
dures [36] periodically to retain the regularization of the level set surface, and the velocity extension scheme is also avoided.
In particular, the present method is able to generate new holes inside the design domain. This is in contrast to the conven-
tional level set method that is unable to create new holes inside the material domain because no mechanism was included
for nucleation purpose [48,2,26], and some additional variation schemes, such as the bubble method [13] or the topological
derivative [41], need to be incorporated to add new holes.

6.3.2. Example 2
The design domain of the multi-material actuator is defined in Fig. 10(a) with a square of 600 lm � 600 lm and discret-

ized with 100 � 100 quadrilateral plate elements in order to display the entire mechanism. The design domain is given a
uniform thickness 10 lm. The left, top and bottom sides are fixed as the Dirichlet boundaries, and the right side is a non-
homogenous Neumann boundary. The piezoelectric field is described in Fig. 10(b) with a uniformly applied voltage 500 V
on the upper surface of the PZT plate. The volume constraints for the elastic material and the piezoelectric material are de-



Fig. 10. (a) Design domain of the multi-material smart actuator.(b) Design domain of the multi-material smart actuator.

Fig. 9. (a) Iteration curve of the design objective function. (b) Iteration curve of the different volume ratios.
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fined as 17.5% and 10%, respectively. The void, elastic and piezoelectric phases are represented using different piecewise con-
stant values 1, 2 and 3, respectively. b = 0.005 is used to weight the regularization term, and Dt = 5 is used as the time step
size to enable the evolvement of the piecewise constant level set function U.

The topologies and the related level set surfaces are displayed in Figs. 11 and 12, respectively. We can find that all the de-
signs are characterized with a smooth boundary, and the shape and topology optimization can be performed at the same time
to get an optimized structure with multi-material distribution, which are the two main merits of the level set-based implicit
representation [48]. Fig. 12 indicates that the piecewise constant type function U can approach the constant values 1, 2 and 3
on convergence, respectively. In such a way, the optimization can be regarded as a numerical process of distributing the elastic
and piezoelectric materials flexibly in the fixed extended domain until the passive coupling structure and the PZT actuators
are optimized simultaneously. Furthermore, a relatively large time step size can be applied to speed up the optimization pro-
cess, because the semi-implicit scheme rather than the explicit scheme is used to solve the initial value problem with a total



Fig. 11. Topologies of the multi-material smart actuator.

Fig. 12. Level set surfaces of the multi-material smart actuator.
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relaxation of the CFL condition [24,44]. It can be seen from Fig. 11 that new holes can be created inside the design domain
which prevents the design from some local minima. In addition, the re-initialization procedures and the velocity extension
scheme are also eliminated from the present level set method. The final design (Fig. 13(a)) is obtained after 309 iterations with
a displacement output 35.14 lm at the specified direction, and the volume constraints are conservative (Fig. 13(b)).

To further demonstrate the influence of the parameter b on the optimal design, we set the parameter to be 0.01, 0.001,
and 0.0001 to study the regularization effect, respectively, and the results are shown in Fig. 14. The corresponding iteration
numbers are 256, 332 and 378, respectively, and the objective values are 34.51, 35.05 and 35.89. The numerical results dem-
onstrate that a larger value can suppress the iteration oscillation and has a tendency of leading to a simpler topology with
relatively less iteration, while a smaller value will indicate a less smooth design process and a final design with thin-bar like
structural members and more iteration. Hence, b is mainly used to control the boundary smoothness as well as the complex
of the final topology via the regularization term, which adjusts the boundary smoothness by ‘‘relaxing” the piecewise con-
stant constraint so as to control the jumps between the transitions of the different constant function surfaces. In practical
applications, more or less, the selection of b is a case of numerical experience. It should be noted that several factors may
influence the boundary smoothness besides the parameter b such as Dt and li [24,27].

In conventional level set methods, explicit schemes are usually applied to solve the Hamilton–Jacobi PDE to enable the
discrete level set processing. One of the most important considerations is the time step size Dt that must be sufficiently small
to satisfy the CFL condition. Spatially, the marching distance each time is no more than the smallest grid size. However, the
present method driven by the semi-implicit AOS algorithm is able to totally relax the CFL condition. As a result, the semi-
implicit AOS scheme is stable with any practically meaningful time steps. Three numerical cases (Fig. 15) are further used
to study the influence of the time step on optimal design with a quadrilateral mesh of 100 � 100, where the parameter
b = 0.001, the volume ratios for elastic and piezoelectric material are now defined as 0.1 and 0.2, respectively. It can be seen
that the time step size involving in the present level set method also has an influence on the final design. Fig. 15(a) denotes
the optimal design having a more complex topology which is obtained after 540 iterations using the smallest step size Dt = 1,
Fig. 15(b) shows the design obtained after 270 iterations using the modest step size Dt = 5 which is characterized with a rel-
atively simple topology, and Fig. 15(c) is the design related to the largest step size Dt = 10 which is obtained after 187 iter-
ations with the simplest topology. Although the present method is in theory free from any time step restriction on solving
the initial value problem, numerical experience in general should be included to determine a practical time step size,
Fig. 13. (a) Iteration curve of the design objective function. (b) Iteration curve of the different volume ratios.



Fig. 14. Results with different parameter b.

Fig. 15. Designs with different step sizes.

Z. Luo et al. / Journal of Computational Physics 228 (2009) 2643–2659 2657
because a too large step size may weaken the capability of the optimization method in describing topologies of sub-struc-
tures in optimization process [26]. In particular, it may delete some basic structure to have included the optimal topology
configuration within the initial iterations. A too small step size will unnecessarily increase the computational cost, and
the final design may involve a locally complex topology. As a matter of fact, the time step in the present piecewise constant
level set method is somewhat similar to the move limit in the ad hoc updating scheme of optimality criteria methods [5], and
it is easy to understand that the move limit has nothing to be with the CFL condition.

7. Conclusions

This paper proposes a level set-based multiphase method for shape and topology optimization of compliant piezoelectric
actuators. An indicator function taking level sets of piecewise constant values is used to implicitly represent and identify the
different design boundaries related to the multiple material regions in the design domain. Only one indicator function rather
than several level set scalar functions is applied to identify all the boundaries between different phases via its discontinu-
ities. The multi-material optimization problem is mathematically described as the minimization of a smooth energy func-
tional under some specified constraints, to which the semi-implicit AOS scheme is applied. As a result, the design of the
smart actuator is transferred to a numerical process of renewing the piecewise constant values until the piezoelectric actu-
ators and the compliant amplifying structure are optimized. The numerical results show that the proposed level set method
can remove several numerical difficulties associating with the solution of the Hamilton–Jacobi PDE in most conventional le-
vel set methods. The AOS scheme is stable for any practical time steps because the relaxation of the CFL condition in solving
partial differential equations. The method in this study can also eliminate the time-consuming re-initializations in the con-
ventional level set methods, and can create new holes inside the material domain. This method can be straightforwardly ap-
plied to optimization problems including more material phases.
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